
pint Documentation
Release 0.9

Hernan E. Grecco

Jan 12, 2019

Contents

1 Quick Installation 3

2 Design principles 5

3 User Guide 7

4 More information 35

5 One last thing 37

i

ii

pint Documentation, Release 0.9

Pint is a Python package to define, operate and manipulate physical quantities: the product of a numerical value and
a unit of measurement. It allows arithmetic operations between them and conversions from and to different units.

It is distributed with a comprehensive list of physical units, prefixes and constants. Due to its modular design, you can
extend (or even rewrite!) the complete list without changing the source code. It supports a lot of numpy mathematical
operations without monkey patching or wrapping numpy.

It has a complete test coverage. It runs in Python 2.7 and 3.3+ with no other dependency. It is licensed under BSD.

It is extremely easy and natural to use:

>>> import pint
>>> ureg = pint.UnitRegistry()
>>> 3 * ureg.meter + 4 * ureg.cm
<Quantity(3.04, 'meter')>

and you can make good use of numpy if you want:

>>> import numpy as np
>>> [3, 4] * ureg.meter + [4, 3] * ureg.cm
<Quantity([3.04 4.03], 'meter')>
>>> np.sum(_)
<Quantity(7.07, 'meter')>

Contents 1

https://github.com/hgrecco/pint/blob/master/pint/default_en.txt

pint Documentation, Release 0.9

2 Contents

CHAPTER 1

Quick Installation

To install Pint, simply:

$ pip install pint

or utilizing conda, with the conda-forge channel:

$ conda install -c conda-forge pint

and then simply enjoy it!

3

pint Documentation, Release 0.9

4 Chapter 1. Quick Installation

CHAPTER 2

Design principles

Although there are already a few very good Python packages to handle physical quantities, no one was really fitting
my needs. Like most developers, I programmed Pint to scratch my own itches.

Unit parsing: prefixed and pluralized forms of units are recognized without explicitly defining them. In other words:
as the prefix kilo and the unit meter are defined, Pint understands kilometers. This results in a much shorter and
maintainable unit definition list as compared to other packages.

Standalone unit definitions: units definitions are loaded from a text file which is simple and easy to edit. Adding and
changing units and their definitions does not involve changing the code.

Advanced string formatting: a quantity can be formatted into string using PEP 3101 syntax. Extended conversion
flags are given to provide symbolic, LaTeX and pretty formatting. Unit name translation is available if Babel is
installed.

Free to choose the numerical type: You can use any numerical type (fraction, float, decimal, numpy.ndarray, etc).
NumPy is not required but supported.

NumPy integration: When you choose to use a NumPy ndarray, its methods and ufuncs are supported including
automatic conversion of units. For example numpy.arccos(q) will require a dimensionless q and the units of the output
quantity will be radian.

Uncertainties integration: transparently handles calculations with quantities with uncertainties (like 3.14±0.01)
meter via the uncertainties package.

Handle temperature: conversion between units with different reference points, like positions on a map or absolute
temperature scales.

Small codebase: easy to maintain codebase with a flat hierarchy.

Dependency free: it depends only on Python and its standard library.

Python 2 and 3: a single codebase that runs unchanged in Python 2.7+ and Python 3.3+.

Pandas integration: Thanks to Pandas Extension Types it is now possible to use Pint with Pandas. Operations on
DataFrames and between columns are units aware, providing even more convenience for users of Pandas DataFrames.
For full details, see the Pandas Support Documentation.

5

https://www.python.org/dev/peps/pep-3101/
http://babel.pocoo.org/
http://www.numpy.org/
http://www.numpy.org/
https://pythonhosted.org/uncertainties/
https://pandas.pydata.org/pandas-docs/stable/extending.html#extension-types
./pandas.rst

pint Documentation, Release 0.9

When you choose to use a NumPy ndarray, its methods and ufuncs are supported including automatic conversion of
units. For example numpy.arccos(q) will require a dimensionless q and the units of the output quantity will be radian.

6 Chapter 2. Design principles

http://www.numpy.org/

CHAPTER 3

User Guide

3.1 Installation

Pint has no dependencies except Python itself. In runs on Python 2.7 and 3.3+.

You can install it (or upgrade to the latest version) using pip:

$ pip install -U pint

That’s all! You can check that Pint is correctly installed by starting up python, and importing pint:

>>> import pint
>>> pint.__version__

Note: If you have an old system installation of Python and you don’t want to mess with it, you can try Anaconda CE.
It is a free Python distribution by Continuum Analytics that includes many scientific packages. To install pint from the
conda-forge channel instead of through pip use:

$ conda install -c conda-forge pint

You can check the installation with the following command:

>>> pint.test()

On Arch Linux, you can alternatively install Pint from the Arch User Repository (AUR). The latest release is available
as python-pint, and packages tracking the master branch of the GitHub repository are available as python-pint-git and
python2-pint-git.

3.1.1 Getting the code

You can also get the code from PyPI or GitHub. You can either clone the public repository:

7

http://www.python.org/
http://www.pip-installer.org/
https://store.continuum.io/cshop/anaconda
https://aur.archlinux.org/packages/python-pint/
https://aur.archlinux.org/packages/python-pint-git/
https://aur.archlinux.org/packages/python2-pint-git/
https://pypi.python.org/pypi/Pint/
https://github.com/hgrecco/pint

pint Documentation, Release 0.9

$ git clone git://github.com/hgrecco/pint.git

Download the tarball:

$ curl -OL https://github.com/hgrecco/pint/tarball/master

Or, download the zipball:

$ curl -OL https://github.com/hgrecco/pint/zipball/master

Once you have a copy of the source, you can embed it in your Python package, or install it into your site-packages
easily:

$ python setup.py install

3.2 Tutorial

3.2.1 Converting Quantities

Pint has the concept of Unit Registry, an object within which units are defined and handled. You start by creating your
registry:

>>> from pint import UnitRegistry
>>> ureg = UnitRegistry()

If no parameter is given to the constructor, the unit registry is populated with the default list of units and prefixes. You
can now simply use the registry in the following way:

>>> distance = 24.0 * ureg.meter
>>> print(distance)
24.0 meter
>>> time = 8.0 * ureg.second
>>> print(time)
8.0 second
>>> print(repr(time))
<Quantity(8.0, 'second')>

In this code distance and time are physical quantity objects (Quantity). Physical quantities can be queried for their
magnitude, units, and dimensionality:

>>> print(distance.magnitude)
24.0
>>> print(distance.units)
meter
>>> print(distance.dimensionality)
[length]

and can handle mathematical operations between:

>>> speed = distance / time
>>> print(speed)
3.0 meter / second

As unit registry knows about the relationship between different units, you can convert quantities to the unit of choice:

8 Chapter 3. User Guide

pint Documentation, Release 0.9

>>> speed.to(ureg.inch / ureg.minute)
<Quantity(7086.614173228345, 'inch / minute')>

This method returns a new object leaving the original intact as can be seen by:

>>> print(speed)
3.0 meter / second

If you want to convert in-place (i.e. without creating another object), you can use the ito method:

>>> speed.ito(ureg.inch / ureg.minute)
>>> speed
<Quantity(7086.614173228345, 'inch / minute')>
>>> print(speed)
7086.614173228345 inch / minute

If you ask Pint to perform an invalid conversion:

>>> speed.to(ureg.joule)
Traceback (most recent call last):
...
pint.errors.DimensionalityError: Cannot convert from 'inch / minute' ([length] /
→˓[time]) to 'joule' ([length] ** 2 * [mass] / [time] ** 2)

Sometimes, the magnitude of the quantity will be very large or very small. The method ‘to_compact’ can adjust the
units to make the quantity more human-readable.

>>> wavelength = 1550 * ureg.nm
>>> frequency = (ureg.speed_of_light / wavelength).to('Hz')
>>> print(frequency)
193414489032258.03 hertz
>>> print(frequency.to_compact())
193.41448903225802 terahertz

There are also methods ‘to_base_units’ and ‘ito_base_units’ which automatically convert to the reference units with
the correct dimensionality:

>>> height = 5.0 * ureg.foot + 9.0 * ureg.inch
>>> print(height)
5.75 foot
>>> print(height.to_base_units())
1.7526 meter
>>> print(height)
5.75 foot
>>> height.ito_base_units()
>>> print(height)
1.7526 meter

There are also methods ‘to_reduced_units’ and ‘ito_reduced_units’ which perform a simplified dimensional reduction,
combining units with the same dimensionality but otherwise keeping your unit definitions intact.

>>> density = 1.4 * ureg.gram / ureg.cm**3
>>> volume = 10*ureg.cc
>>> mass = density*volume
>>> print(mass)
14.0 cc * gram / centimeter ** 3
>>> print(mass.to_reduced_units())

(continues on next page)

3.2. Tutorial 9

pint Documentation, Release 0.9

(continued from previous page)

14.0 gram
>>> print(mass)
14.0 cc * gram / centimeter ** 3
>>> mass.ito_reduced_units()
>>> print(mass)
14.0 gram

If you want pint to automatically perform dimensional reduction when producing new quantities, the UnitRegistry
accepts a parameter auto_reduce_dimensions. Dimensional reduction can be slow, so auto-reducing is disabled by
default.

In some cases it is useful to define physical quantities objects using the class constructor:

>>> Q_ = ureg.Quantity
>>> Q_(1.78, ureg.meter) == 1.78 * ureg.meter
True

(I tend to abbreviate Quantity as Q_) The built-in parser recognizes prefixed and pluralized units even though they are
not in the definition list:

>>> distance = 42 * ureg.kilometers
>>> print(distance)
42 kilometer
>>> print(distance.to(ureg.meter))
42000.0 meter

If you try to use a unit which is not in the registry:

>>> speed = 23 * ureg.snail_speed
Traceback (most recent call last):
...
pint.errors.UndefinedUnitError: 'snail_speed' is not defined in the unit registry

You can add your own units to the registry or build your own list. More info on that Defining units

3.2.2 String parsing

Pint can also handle units provided as strings:

>>> 2.54 * ureg.parse_expression('centimeter')
<Quantity(2.54, 'centimeter')>

or using the registry as a callable for a short form for parse_expression:

>>> 2.54 * ureg('centimeter')
<Quantity(2.54, 'centimeter')>

or using the Quantity constructor:

>>> Q_(2.54, 'centimeter')
<Quantity(2.54, 'centimeter')>

Numbers are also parsed, so you can use an expression:

>>> ureg('2.54 * centimeter')
<Quantity(2.54, 'centimeter')>

10 Chapter 3. User Guide

pint Documentation, Release 0.9

or:

>>> Q_('2.54 * centimeter')
<Quantity(2.54, 'centimeter')>

or leave out the * altogether:

>>> Q_('2.54cm')
<Quantity(2.54, 'centimeter')>

This enables you to build a simple unit converter in 3 lines:

>>> user_input = '2.54 * centimeter to inch'
>>> src, dst = user_input.split(' to ')
>>> Q_(src).to(dst)
<Quantity(1.0, 'inch')>

Dimensionless quantities can also be parsed into an appropriate object:

>>> ureg('2.54')
2.54
>>> type(ureg('2.54'))
<class 'float'>

or

>>> Q_('2.54')
<Quantity(2.54, 'dimensionless')>
>>> type(Q_('2.54'))
<class 'pint.quantity.build_quantity_class.<locals>.Quantity'>

Note: Pint´s rule for parsing strings with a mixture of numbers and units is that units are treated with the same
precedence as numbers.

For example, the unit of

>>> Q_('3 l / 100 km')
<Quantity(0.03, 'kilometer * liter')>

may be unexpected first but is a consequence of applying this rule. Use brackets to get the expected result:

>>> Q_('3 l / (100 km)')
<Quantity(0.03, 'liter / kilometer')>

Note: Since version 0.7, Pint does not use eval under the hood. This change removes the serious security problems
that the system is exposed to when parsing information from untrusted sources.

3.2.3 String formatting

Pint’s physical quantities can be easily printed:

3.2. Tutorial 11

http://docs.python.org/3/library/functions.html#eval
http://nedbatchelder.com/blog/201206/eval_really_is_dangerous.html

pint Documentation, Release 0.9

>>> accel = 1.3 * ureg['meter/second**2']
>>> # The standard string formatting code
>>> print('The str is {!s}'.format(accel))
The str is 1.3 meter / second ** 2
>>> # The standard representation formatting code
>>> print('The repr is {!r}'.format(accel))
The repr is <Quantity(1.3, 'meter / second ** 2')>
>>> # Accessing useful attributes
>>> print('The magnitude is {0.magnitude} with units {0.units}'.format(accel))
The magnitude is 1.3 with units meter / second ** 2

But Pint also extends the standard formatting capabilities for unicode and LaTeX representations:

>>> accel = 1.3 * ureg['meter/second**2']
>>> # Pretty print
>>> 'The pretty representation is {:P}'.format(accel)
'The pretty representation is 1.3 meter/second2'
>>> # Latex print
>>> 'The latex representation is {:L}'.format(accel)
'The latex representation is 1.3\\ \\frac{\\mathrm{meter}}{\\mathrm{second}^{2}}'
>>> # HTML print
>>> 'The HTML representation is {:H}'.format(accel)
'The HTML representation is 1.3 meter/second²'

Note: In Python 2, run from __future__ import unicode_literals or prefix pretty formatted strings
with u to prevent UnicodeEncodeError.

If you want to use abbreviated unit names, prefix the specification with ~:

>>> 'The str is {:~}'.format(accel)
'The str is 1.3 m / s ** 2'
>>> 'The pretty representation is {:~P}'.format(accel)
'The pretty representation is 1.3 m/s2'

The same is true for latex (L) and HTML (H) specs.

Pint also supports the LaTeX siunitx package:

>>> accel = 1.3 * ureg['meter/second**2']
>>> # siunitx Latex print
>>> print('The siunitx representation is {:Lx}'.format(accel))
The siunitx representation is \SI[]{1.3}{\meter\per\second\squared}

Additionally, you can specify a default format specification:

>>> 'The acceleration is {}'.format(accel)
'The acceleration is 1.3 meter / second ** 2'
>>> ureg.default_format = 'P'
>>> 'The acceleration is {}'.format(accel)
'The acceleration is 1.3 meter/second2'

Finally, if Babel is installed you can translate unit names to any language

>>> accel.format_babel(locale='fr_FR')
'1.3 mètre par seconde2'

12 Chapter 3. User Guide

http://babel.pocoo.org/

pint Documentation, Release 0.9

3.2.4 Using Pint in your projects

If you use Pint in multiple modules within your Python package, you normally want to avoid creating multiple in-
stances of the unit registry. The best way to do this is by instantiating the registry in a single place. For example, you
can add the following code to your package __init__.py:

from pint import UnitRegistry
ureg = UnitRegistry()
Q_ = ureg.Quantity

Then in yourmodule.py the code would be:

from . import ureg, Q_

length = 10 * ureg.meter
my_speed = Q_(20, 'm/s')

If you are pickling and unplicking Quantities within your project, you should also define the registry as the application
registry:

from pint import UnitRegistry, set_application_registry
ureg = UnitRegistry()
set_application_registry(ureg)

Warning: There are no global units in Pint. All units belong to a registry and you can have multiple registries
instantiated at the same time. However, you are not supposed to operate between quantities that belong to different
registries. Never do things like this:

>>> q1 = 10 * UnitRegistry().meter
>>> q2 = 10 * UnitRegistry().meter
>>> q1 + q2
Traceback (most recent call last):
...
ValueError: Cannot operate with Quantity and Quantity of different registries.
>>> id(q1._REGISTRY) == id(q2._REGISTRY)
False

3.3 NumPy support

The magnitude of a Pint quantity can be of any numerical type and you are free to choose it according to your needs.
In numerical applications, it is quite convenient to use NumPy ndarray and therefore they are supported by Pint.

First, we import the relevant packages:

>>> import numpy as np
>>> from pint import UnitRegistry
>>> ureg = UnitRegistry()
>>> Q_ = ureg.Quantity

and then we create a quantity the standard way

3.3. NumPy support 13

http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html

pint Documentation, Release 0.9

>>> legs1 = Q_(np.asarray([3., 4.]), 'meter')
>>> print(legs1)
[3. 4.] meter

or we use the property that Pint converts iterables into NumPy ndarrays to simply write:

>>> legs1 = [3., 4.] * ureg.meter
>>> print(legs1)
[3. 4.] meter

All usual Pint methods can be used with this quantity. For example:

>>> print(legs1.to('kilometer'))
[0.003 0.004] kilometer
>>> print(legs1.dimensionality)
[length]
>>> legs1.to('joule')
Traceback (most recent call last):
...
pint.errors.DimensionalityError: Cannot convert from 'meter' ([length]) to 'joule'
→˓([length] ** 2 * [mass] / [time] ** 2)

NumPy functions are supported by Pint. For example if we define:

>>> legs2 = [400., 300.] * ureg.centimeter
>>> print(legs2)
[400. 300.] centimeter

we can calculate the hypotenuse of the right triangles with legs1 and legs2.

>>> hyps = np.hypot(legs1, legs2)
>>> print(hyps)
[5. 5.] meter

Notice that before the np.hypot was used, the numerical value of legs2 was internally converted to the units of legs1
as expected.

Similarly, when you apply a function that expects angles in radians, a conversion is applied before the requested
calculation:

>>> angles = np.arccos(legs2/hyps)
>>> print(angles)
[0.64350111 0.92729522] radian

You can convert the result to degrees using the corresponding NumPy function:

>>> print(np.rad2deg(angles))
[36.86989765 53.13010235] degree

Applying a function that expects angles to a quantity with a different dimensionality results in an error:

>>> np.arccos(legs2)
Traceback (most recent call last):
...
pint.errors.DimensionalityError: Cannot convert from 'centimeter' ([length]) to
→˓'dimensionless' (dimensionless)

14 Chapter 3. User Guide

pint Documentation, Release 0.9

3.3.1 Support

The following ufuncs can be applied to a Quantity object:

• Math operations: add, subtract, multiply, divide, logaddexp, logaddexp2, true_divide, floor_divide, negative,
remainder mod, fmod, absolute, rint, sign, conj, exp, exp2, log, log2, log10, expm1, log1p, sqrt, square, recip-
rocal

• Trigonometric functions: sin, cos, tan, arcsin, arccos, arctan, arctan2, hypot, sinh, cosh, tanh, arcsinh, arccosh,
arctanh, deg2rad, rad2deg

• Comparison functions: greater, greater_equal, less, less_equal, not_equal, equal

• Floating functions: isreal,iscomplex, isfinite, isinf, isnan, signbit, copysign, nextafter, modf, ldexp, frexp,
fmod, floor, ceil, trunc

And the following ndarrays methods and functions:

• sum, fill, reshape, transpose, flatten, ravel, squeeze, take, put, repeat, sort, argsort, diagonal, compress, nonzero,
searchsorted, max, argmax, min, argmin, ptp, clip, round, trace, cumsum, mean, var, std, prod, cumprod, conj,
conjugate, flatten

Quantity is not a subclass of ndarray. This might change in the future, but for this reason functions that call
numpy.asanyarray are currently not supported. These functions are:

• unwrap, trapz, diff, ediff1d, fix, gradient, cross, ones_like

3.3.2 Comments

What follows is a short discussion about how NumPy support is implemented in Pint’s Quantity Object.

For the supported functions, Pint expects certain units and attempts to convert the input (or inputs). For example, the
argument of the exponential function (numpy.exp) must be dimensionless. Units will be simplified (converting the
magnitude appropriately) and numpy.exp will be applied to the resulting magnitude. If the input is not dimensionless,
a DimensionalityError exception will be raised.

In some functions that take 2 or more arguments (e.g. arctan2), the second argument is converted to the units of the
first. Again, a DimensionalityError exception will be raised if this is not possible.

This behaviour introduces some performance penalties and increased memory usage. Quantities that must be converted
to other units require additional memory and CPU cycles. On top of this, all ufuncs are implemented in the Quantity
class by overriding __array_wrap__, a NumPy hook that is executed after the calculation and before returning the
value. To our knowledge, there is no way to signal back to NumPy that our code will take care of the calculation. For
this reason the calculation is actually done twice: first in the original ndarray and then in then in the one that has been
converted to the right units. Therefore, for numerically intensive code, you might want to convert the objects first and
then use directly the magnitude.

3.4 Temperature conversion

Unlike meters and seconds, the temperature units fahrenheits and celsius are non-multiplicative units. These tempera-
ture units are expressed in a system with a reference point, and relations between temperature units include not only a
scaling factor but also an offset. Pint supports these type of units and conversions between them. The default definition
file includes fahrenheits, celsius, kelvin and rankine abbreviated as degF, degC, degK, and degR.

For example, to convert from celsius to fahrenheit:

3.4. Temperature conversion 15

http://docs.scipy.org/doc/numpy/reference/ufuncs.html
http://docs.scipy.org/doc/numpy/reference/arrays.ndarray.html#array-methods

pint Documentation, Release 0.9

>>> from pint import UnitRegistry
>>> ureg = UnitRegistry()
>>> Q_ = ureg.Quantity
>>> home = Q_(25.4, ureg.degC)
>>> print(home.to('degF'))
77.7200004 degF

or to other kelvin or rankine:

>>> print(home.to('kelvin'))
298.55 kelvin
>>> print(home.to('degR'))
537.39 degR

Additionally, for every non-multiplicative temperature unit in the registry, there is also a delta counterpart to specify
differences. Absolute units have no delta counterpart. For example, the change in celsius is equal to the change in
kelvin, but not in fahrenheit (as the scaling factor is different).

>>> increase = 12.3 * ureg.delta_degC
>>> print(increase.to(ureg.kelvin))
12.3 kelvin
>>> print(increase.to(ureg.delta_degF))
22.14 delta_degF

Subtraction of two temperatures given in offset units yields a delta unit:

>>> Q_(25.4, ureg.degC) - Q_(10., ureg.degC)
<Quantity(15.4, 'delta_degC')>

You can add or subtract a quantity with delta unit and a quantity with offset unit:

>>> Q_(25.4, ureg.degC) + Q_(10., ureg.delta_degC)
<Quantity(35.4, 'degC')>
>>> Q_(25.4, ureg.degC) - Q_(10., ureg.delta_degC)
<Quantity(15.4, 'degC')>

If you want to add a quantity with absolute unit to one with offset unit, like here

>>> heating_rate = 0.5 * ureg.kelvin/ureg.min
>>> Q_(10., ureg.degC) + heating_rate * Q_(30, ureg.min)
Traceback (most recent call last):

...
pint.errors.OffsetUnitCalculusError: Ambiguous operation with offset unit (degC,
→˓kelvin).

you have to avoid the ambiguity by either converting the offset unit to the absolute unit before addition

>>> Q_(10., ureg.degC).to(ureg.kelvin) + heating_rate * Q_(30, ureg.min)
<Quantity(298.15, 'kelvin')>

or convert the absolute unit to a delta unit:

>>> Q_(10., ureg.degC) + heating_rate.to('delta_degC/min') * Q_(30, ureg.min)
<Quantity(25.0, 'degC')>

In contrast to subtraction, the addition of quantities with offset units is ambiguous, e.g. for 10 degC + 100 degC two
different result are reasonable depending on the context, 110 degC or 383.15 °C (= 283.15 K + 373.15 K). Because of
this ambiguity pint raises an error for the addition of two quantities with offset units (since pint-0.6).

16 Chapter 3. User Guide

pint Documentation, Release 0.9

Quantities with delta units are multiplicative:

>>> speed = 60. * ureg.delta_degC / ureg.min
>>> print(speed.to('delta_degC/second'))
1.0 delta_degC / second

However, multiplication, division and exponentiation of quantities with offset units is problematic just like addition.
Pint (since version 0.6) will by default raise an error when a quantity with offset unit is used in these operations. Due
to this quantities with offset units cannot be created like other quantities by multiplication of magnitude and unit but
have to be explicitly created:

>>> ureg = UnitRegistry()
>>> home = 25.4 * ureg.degC
Traceback (most recent call last):

...
pint.errors.OffsetUnitCalculusError: Ambiguous operation with offset unit (degC).
>>> Q_(25.4, ureg.degC)
<Quantity(25.4, 'degC')>

As an alternative to raising an error, pint can be configured to work more relaxed via setting the UnitRegistry parameter
autoconvert_offset_to_baseunit to true. In this mode, pint behaves differently:

• Multiplication of a quantity with a single offset unit with order +1 by a number or ndarray yields the quantity in
the given unit.

>>> ureg = UnitRegistry(autoconvert_offset_to_baseunit = True)
>>> T = 25.4 * ureg.degC
>>> T
<Quantity(25.4, 'degC')>

• Before all other multiplications, all divisions and in case of exponentiation1 involving quantities with offset-
units, pint will convert the quantities with offset units automatically to the corresponding base unit before per-
forming the operation.

>>> 1/T
<Quantity(0.00334952269302, '1 / kelvin')>
>>> T * 10 * ureg.meter
<Quantity(527.15, 'kelvin * meter')>

You can change the behaviour at any time:

>>> ureg.autoconvert_offset_to_baseunit = False
>>> 1/T
Traceback (most recent call last):

...
pint.errors.OffsetUnitCalculusError: Ambiguous operation with offset unit (degC).

The parser knows about delta units and uses them when a temperature unit is found in a multiplicative context. For
example, here:

>>> print(ureg.parse_units('degC/meter'))
delta_degC / meter

but not here:

1 If the exponent is +1, the quantity will not be converted to base unit but remains unchanged.

3.4. Temperature conversion 17

pint Documentation, Release 0.9

>>> print(ureg.parse_units('degC'))
degC

You can override this behaviour:

>>> print(ureg.parse_units('degC/meter', as_delta=False))
degC / meter

Note that the magnitude is left unchanged:

>>> Q_(10, 'degC/meter')
<Quantity(10, 'delta_degC / meter')>

To define a new temperature, you need to specify the offset. For example, this is the definition of the celsius and
fahrenheit:

degC = degK; offset: 273.15 = celsius
degF = 5 / 9 * degK; offset: 255.372222 = fahrenheit

You do not need to define delta units, as they are defined automatically.

3.5 Wrapping and checking functions

In some cases you might want to use pint with a pre-existing web service or library which is not units aware. Or you
might want to write a fast implementation of a numerical algorithm that requires the input values in some specific
units.

For example, consider a function to return the period of the pendulum within a hypothetical physics library. The library
does not use units, but instead requires you to provide numerical values in certain units:

>>> from simple_physics import pendulum_period
>>> help(pendulum_period)
Help on function pendulum_period in module simple_physics:

pendulum_period(length)
Return the pendulum period in seconds. The length of the pendulum
must be provided in meters.

>>> pendulum_period(1)
2.0064092925890407

This behaviour is very error prone, in particular when combining multiple libraries. You could wrap this function to
use Quantities instead:

>>> from pint import UnitRegistry
>>> ureg = UnitRegistry()
>>> def mypp_caveman(length):
... return pendulum_period(length.to(ureg.meter).magnitude) * ureg.second

and:

>>> mypp_caveman(100 * ureg.centimeter)
<Quantity(2.0064092925890407, 'second')>

Pint provides a more convenient way to do this:

18 Chapter 3. User Guide

pint Documentation, Release 0.9

>>> mypp = ureg.wraps(ureg.second, ureg.meter)(pendulum_period)

Or in the decorator format:

>>> @ureg.wraps(ureg.second, ureg.meter)
... def mypp(length):
... return pendulum_period(length)
>>> mypp(100 * ureg.centimeter)
<Quantity(2.0064092925890407, 'second')>

wraps takes 3 input arguments:

• ret: the return units. Use None to skip conversion.

• args: the inputs units for each argument, as an iterable. Use None to skip conversion of any given element.

• strict: if True all convertible arguments must be a Quantity and others will raise a ValueError (True by de-
fault)

3.5.1 Strict Mode

By default, the function is wrapped in strict mode. In this mode, the input arguments assigned to units must be a
Quantities.

>>> mypp(1. * ureg.meter)
<Quantity(2.0064092925890407, 'second')>
>>> mypp(1.)
Traceback (most recent call last):
...
ValueError: A wrapped function using strict=True requires quantity for all arguments
→˓with not None units. (error found for meter, 1.0)

To enable using non-Quantity numerical values, set strict to False‘.

>>> mypp_ns = ureg.wraps(ureg.second, ureg.meter, False)(pendulum_period)
>>> mypp_ns(1. * ureg.meter)
<Quantity(2.0064092925890407, 'second')>
>>> mypp_ns(1.)
<Quantity(2.0064092925890407, 'second')>

In this mode, the value is assumed to have the correct units.

3.5.2 Multiple arguments or return values

For a function with more arguments, use a tuple:

>>> from simple_physics import pendulum_period2
>>> help(pendulum_period2)
Help on function pendulum_period2 in module simple_physics:

pendulum_period2(length, swing_amplitude)
Return the pendulum period in seconds. The length of the pendulum
must be provided in meters. The swing_amplitude must be in radians.

>>> mypp2 = ureg.wraps(ureg.second, (ureg.meter, ureg.radians))(pendulum_period2)
...

3.5. Wrapping and checking functions 19

pint Documentation, Release 0.9

Or if the function has multiple outputs:

>>> mypp3 = ureg.wraps((ureg.second, ureg.meter / ureg.second),
... (ureg.meter, ureg.radians))(pendulum_period_maxspeed)
...

If there are more return values than specified units, None is assumed for the extra outputs. For example, given the
NREL SOLPOS calculator that outputs solar zenith, azimuth and air mass, the following wrapper assumes no units for
airmass:

@UREG.wraps(('deg', 'deg'), ('deg', 'deg', 'millibar', 'degC'))
def solar_position(lat, lon, press, tamb, timestamp):

return zenith, azimuth, airmass

3.5.3 Optional arguments

For a function with named keywords with optional values, use a tuple for all arguments:

>>> @ureg.wraps(ureg.second, (ureg.meters, ureg.meters/ureg.second**2))
... def calculate_time_to_fall(height, gravity=Q_(9.8, 'm/s^2'), verbose=False):
... """Calculate time to fall from a height h.
...
... By default, the gravity is assumed to be earth gravity,
... but it can be modified.
...
... d = .5 * g * t**2
... t = sqrt(2 * d / g)
... """
... t = sqrt(2 * height / gravity)
... if verbose: print(str(t) + " seconds to fall")
... return t
...
>>> lunar_module_height = Q_(22, 'feet') + Q_(11, 'inches')
>>> calculate_time_to_fall(lunar_module_height, verbose=True)
1.1939473204801092 seconds to fall
<Quantity(1.1939473204801092, 'second')>
>>>
>>> moon_gravity = Q_(1.625, 'm/s^2')
>>> tcalculate_time_to_fall(lunar_module_height, moon_gravity)
<Quantity(2.932051001760214, 'second')>

3.5.4 Specifying relations between arguments

In certain cases the actual units but just their relation. This is done using string starting with the equal sign =:

>>> @ureg.wraps('=A**2', ('=A', '=A'))
... def sqsum(x, y):
... return x * x + 2 * x * y + y * y

which can be read as the first argument (x) has certain units (we labeled them A), the second argument (y) has the same
units as the first (A again). The return value has the unit of x squared (A**2)

You can use more than one label:

20 Chapter 3. User Guide

pint Documentation, Release 0.9

>>> @ureg.wraps('=A**2*B', ('=A', '=A*B', '=B'))
... def some_function(x, y, z):
... pass

With optional arguments

>>> @ureg.wraps('=A*B', ('=A', '=B'))
... def get_displacement(time, rate=Q_(1, 'm/s')):
... return time * rate
...
>>> get_displacement(Q_(2, 's'))
<Quantity(2, 'meter')>
>>> get_displacement(Q_(2, 's'), Q_(1, 'deg/s'))
<Quantity(2, 'degree')>

3.5.5 Ignoring an argument or return value

To avoid the conversion of an argument or return value, use None

>>> mypp3 = ureg.wraps((ureg.second, None), ureg.meter)(pendulum_period_error)

3.6 Checking dimensionality

When you want pint quantities to be used as inputs to your functions, pint provides a wrapper to ensure units are of
correct type - or more precisely, they match the expected dimensionality of the physical quantity.

Similar to wraps(), you can pass None to skip checking of some parameters, but the return parameter type is not
checked.

>>> mypp = ureg.check('[length]')(pendulum_period)

In the decorator format:

>>> @ureg.check('[length]')
... def pendulum_period(length):
... return 2*math.pi*math.sqrt(length/G)

If you just want to check the dimensionality of a quantity, you can do so with the built-in ‘check’ function.

>>> distance = 1 * ureg.m
>>> distance.check('[length]')
True
>>> distance.check('[time]')
False

3.7 Plotting with Matplotlib

Matplotlib is a Python plotting library that produces a wide range of plot types with publication-quality images and
support for typesetting mathematical formulas. Starting with Matplotlib 2.0, Quantity instances can be used with
matplotlib’s support for units when plotting. To do so, the support must be manually enabled on a UnitRegistry:

3.6. Checking dimensionality 21

https://matplotlib.org

pint Documentation, Release 0.9

>>> import pint
>>> ureg = pint.UnitRegistry()
>>> ureg.setup_matplotlib()

This support can also be disabled with:

>>> ureg.setup_matplotlib(False)

This allows then plotting quantities with different units:

import matplotlib.pyplot as plt
import numpy as np
import pint

ureg = pint.UnitRegistry()
ureg.setup_matplotlib(True)

y = np.linspace(0, 30) * ureg.miles
x = np.linspace(0, 5) * ureg.hours

fig, ax = plt.subplots()
ax.plot(x, y, 'tab:blue')
ax.axhline(26400 * ureg.feet, color='tab:red')
ax.axvline(120 * ureg.minutes, color='tab:green')

This also allows controlling the actual plotting units for the x and y axes:

import matplotlib.pyplot as plt
import numpy as np
import pint

ureg = pint.UnitRegistry()
ureg.setup_matplotlib(True)

y = np.linspace(0, 30) * ureg.miles
x = np.linspace(0, 5) * ureg.hours

fig, ax = plt.subplots()
ax.yaxis.set_units(ureg.inches)
ax.xaxis.set_units(ureg.seconds)

ax.plot(x, y, 'tab:blue')
ax.axhline(26400 * ureg.feet, color='tab:red')
ax.axvline(120 * ureg.minutes, color='tab:green')

For more information, visit the Matplotlib home page.

3.8 Serialization

In order to dump a Quantity to disk, store it in a database or transmit it over the wire you need to be able to serialize
and then deserialize the object.

The easiest way to do this is by converting the quantity to a string:

22 Chapter 3. User Guide

https://matplotlib.org

pint Documentation, Release 0.9

>>> import pint
>>> ureg = pint.UnitRegistry()
>>> duration = 24.2 * ureg.years
>>> duration
<Quantity(24.2, 'year')>
>>> serialized = str(duration)
>>> print(serialized)
24.2 year

Remember that you can easily control the number of digits in the representation as shown in String formatting.

You dump/store/transmit the content of serialized (‘24.2 year’). When you want to recover it in another pro-
cess/machine, you just:

>>> import pint
>>> ureg = pint.UnitRegistry()
>>> duration = ureg('24.2 year')
>>> print(duration)
24.2 year

Notice that the serialized quantity is likely to be parsed in another registry as shown in this example. Pint Quantities
do not exist on their own but they are always related to a UnitRegistry. Everything will work as expected if both
registries, are compatible (e.g. they were created using the same definition file). However, things could go wrong if
the registries are incompatible. For example, year could not be defined in the target registry. Or what is even worse, it
could be defined in a different way. Always have to keep in mind that the interpretation and conversion of Quantities
are UnitRegistry dependent.

In certain cases, you want a binary representation of the data. Python’s standard algorithm for serialization is called
Pickle. Pint quantities implement the magic __reduce__ method and therefore can be Pickled and Unpickled. However,
you have to bear in mind, that the DEFAULT_REGISTRY is used for unpickling and this might be different from the
one that was used during pickling. If you want to have control over the deserialization, the best way is to create a tuple
with the magnitude and the units:

>>> to_serialize = duration.to_tuple()
>>> print(to_serialize)
(24.2, (('year', 1.0),))

And then you can just pickle that:

>>> import pickle
>>> serialized = pickle.dumps(to_serialize, -1)

To unpickle, just

>>> loaded = pickle.loads(serialized)
>>> ureg.Quantity.from_tuple(loaded)
<Quantity(24.2, 'year')>

(To pickle to and from a file just use the dump and load method as described in _Pickle)

You can use the same mechanism with any serialization protocol, not only with binary ones. (In fact, version 0 of
the Pickle protocol is ASCII). Other common serialization protocols/packages are json, yaml, shelve, hdf5 (or via
PyTables) and dill. Notice that not all of these packages will serialize properly the magnitude (which can be any
numerical type such as numpy.ndarray).

Using the serialize package you can load and read from multiple formats:

3.8. Serialization 23

http://docs.python.org/3/library/pickle.html
http://docs.python.org/3/library/json.html
http://pyyaml.org/
http://docs.python.org/3.4/library/shelve.html
http://www.h5py.org/
http://www.pytables.org
https://pypi.python.org/pypi/dill
https://github.com/hgrecco/serialize

pint Documentation, Release 0.9

>>> from serialize import dump, load, register_class
>>> register_class(ureg.Quantity, ureg.Quantity.to_tuple, ureg.Quantity.from_tuple)
>>> dump(duration, 'output.yaml')
>>> r = load('output.yaml')

(Check out the serialize docs for more information)

3.9 Buckingham Pi Theorem

Buckingham 𝜋 theorem states that an equation involving n number of physical variables which are expressible in terms
of k independent fundamental physical quantities can be expressed in terms of p = n - k dimensionless parameters.

To start with a very simple case, consider that you want to find a dimensionless quantity involving the magnitudes V,
T and L with dimensions [length]/[time], [time] and [length] respectively.

>>> from pint import pi_theorem
>>> pi_theorem({'V': '[length]/[time]', 'T': '[time]', 'L': '[length]'})
[{'V': 1.0, 'T': 1.0, 'L': -1.0}]

The result indicates that a dimensionless quantity can be obtained by multiplying V by T and the inverse of L.

Which can be pretty printed using the Pint formatter:

>>> from pint import formatter
>>> result = pi_theorem({'V': '[length]/[time]', 'T': '[time]', 'L': '[length]'})
>>> print(formatter(result[0].items()))
T * V / L

You can also apply the Buckingham 𝜋 theorem associated to a Registry. In this case, you can use derived dimensions
such as speed:

>>> from pint import UnitRegistry
>>> ureg = UnitRegistry()
>>> ureg.pi_theorem({'V': '[speed]', 'T': '[time]', 'L': '[length]'})
[{'V': 1.0, 'T': 1.0, 'L': -1.0}]

or unit names:

>>> ureg.pi_theorem({'V': 'meter/second', 'T': 'second', 'L': 'meter'})
[{'V': 1.0, 'T': 1.0, 'L': -1.0}]

or quantities:

>>> Q_ = ureg.Quantity
>>> ureg.pi_theorem({'V': Q_(1, 'meter/second'),
... 'T': Q_(1, 'second'),
... 'L': Q_(1, 'meter')})
[{'V': 1.0, 'T': 1.0, 'L': -1.0}]

3.9.1 Application to the pendulum

There are 3 fundamental physical units in this equation: time, mass, and length, and 4 dimensional variables, T
(oscillation period), M (mass), L (the length of the string), and g (earth gravity). Thus we need only 4 - 3 = 1
dimensionless parameter.

24 Chapter 3. User Guide

https://github.com/hgrecco/serialize
http://en.wikipedia.org/wiki/Buckingham_%CF%80_theorem

pint Documentation, Release 0.9

>>> ureg.pi_theorem({'T': '[time]',
... 'M': '[mass]',
... 'L': '[length]',
... 'g': '[acceleration]'})
[{'T': 2.0, 'g': 1.0, 'L': -1.0}]

which means that the dimensionless quantity is:

Π =
𝑔𝑇 2

𝐿

and therefore:

𝑇 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

√︃
𝐿

𝑔

(In case you wonder, the constant is equal to 2 𝜋, but this is outside the scope of this help)

3.9.2 Pressure loss in a pipe

What is the pressure loss p in a pipe with length L and diameter D for a fluid with density d, and viscosity m travelling
with speed v? As pressure, mass, volume, viscosity and speed are defined as derived dimensions in the registry, we
only need to explicitly write the density dimensions.

>>> ureg.pi_theorem({'p': '[pressure]',
... 'L': '[length]',
... 'D': '[length]',
... 'd': '[mass]/[volume]',
... 'm': '[viscosity]',
... 'v': '[speed]'
... })
[{'p': 1.0, 'm': -2.0, 'd': 1.0, 'L': 2.0}, {'v': 1.0, 'm': -1.0, 'd': 1.0, 'L': 1.0},
→˓ {'L': -1.0, 'D': 1.0}]

The second dimensionless quantity is the Reynolds Number

3.10 Contexts

If you work frequently on certain topics, you will probably find the need to convert between dimensions based on
some pre-established (physical) relationships. For example, in spectroscopy you need to transform from wavelength
to frequency. These are incompatible units and therefore Pint will raise an error if your do this directly:

>>> import pint
>>> ureg = pint.UnitRegistry()
>>> q = 500 * ureg.nm
>>> q.to('Hz')
Traceback (most recent call last):
...
pint.errors.DimensionalityError: Cannot convert from 'nanometer' ([length]) to 'hertz
→˓' (1 / [time])

You probably want to use the relation frequency = speed_of_light / wavelength:

3.10. Contexts 25

http://en.wikipedia.org/wiki/Reynolds_number

pint Documentation, Release 0.9

>>> (ureg.speed_of_light / q).to('Hz')
<Quantity(5.99584916e+14, 'hertz')>

To make this task easy, Pint has the concept of contexts which provides conversion rules between dimensions. For
example, the relation between wavelength and frequency is defined in the spectroscopy context (abbreviated sp). You
can tell pint to use this context when you convert a quantity to different units.

>>> q.to('Hz', 'spectroscopy')
<Quantity(5.99584916e+14, 'hertz')>

or with the abbreviated form:

>>> q.to('Hz', 'sp')
<Quantity(5.99584916e+14, 'hertz')>

Contexts can be also enabled for blocks of code using the with statement:

>>> with ureg.context('sp'):
... q.to('Hz')
<Quantity(5.99584916e+14, 'hertz')>

If you need a particular context in all your code, you can enable it for all operations with the registry:

>>> ureg.enable_contexts('sp')

To disable the context, just call:

>>> ureg.disable_contexts()

3.10.1 Enabling multiple contexts

You can enable multiple contexts:

>>> q.to('Hz', 'sp', 'boltzmann')
<Quantity(5.99584916e+14, 'hertz')>

This works also using the with statement:

>>> with ureg.context('sp', 'boltzmann'):
... q.to('Hz')
<Quantity(5.99584916e+14, 'hertz')>

or in the registry:

>>> ureg.enable_contexts('sp', 'boltzmann')
>>> q.to('Hz')
<Quantity(5.99584916e+14, 'hertz')>

If a conversion rule between two dimensions appears in more than one context, the one in the last context has prece-
dence. This is easy to remember if you think that the previous syntax is equivalent to nest contexts:

>>> with ureg.context('sp'):
... with ureg.context('boltzmann') :
... q.to('Hz')
<Quantity(5.99584916e+14, 'hertz')>

26 Chapter 3. User Guide

pint Documentation, Release 0.9

3.10.2 Parameterized contexts

Contexts can also take named parameters. For example, in the spectroscopy you can specify the index of refraction of
the medium (n). In this way you can calculate, for example, the wavelength in water of a laser which on air is 530 nm.

>>> wl = 530. * ureg.nm
>>> f = wl.to('Hz', 'sp')
>>> f.to('nm', 'sp', n=1.33)
<Quantity(398.496240602, 'nanometer')>

Contexts can also accept Pint Quantity objects as parameters. For example, the ‘chemistry’ context accepts the molec-
ular weight of a substance (as a Quantity with dimensions of [mass]/[substance]) to allow conversion between moles
and mass.

>>> substance = 95 * ureg('g')
>>> substance.to('moles', 'chemistry', mw = 5 * ureg('g/mol'))
<Quantity(19.0, 'mole')>

3.10.3 Ensuring context when calling a function

Pint provides a decorator to make sure that a function called is done within a given context. Just like before, you have
to provide as argument the name (or alias) of the context and the parameters that you wish to set.

>>> wl = 530. * ureg.nm
>>> @ureg.with_context('sp', n=1.33)
... def f(wl):
... return wl.to('Hz').magnitude
>>> f(wl)
398.496240602

This decorator can be combined with wraps or check decorators described in ‘wrapping‘_

3.10.4 Defining contexts in a file

Like all units and dimensions in Pint, contexts are defined using an easy to read text syntax. For example, the definition
of the spectroscopy context is:

@context(n=1) spectroscopy = sp
n index of refraction of the medium.
[length] <-> [frequency]: speed_of_light / n / value
[frequency] -> [energy]: planck_constant * value
[energy] -> [frequency]: value / planck_constant

@end

The @context directive indicates the beginning of the transformations which are finished by the @end statement. You
can optionally specify parameters for the context in parenthesis. All parameters are named and default values are
mandatory. Multiple parameters are separated by commas (like in a python function definition). Finally, you provide
the name of the context (e.g. spectroscopy) and, optionally, a short version of the name (e.g. sp) separated by an equal
sign. See the definition of the ‘chemistry’ context in default_en.txt for an example of a multiple-parameter context.

Conversions rules are specified by providing source and destination dimensions separated using a colon (:) from the
equation. A special variable named value will be replaced by the source quantity. Other names will be looked first in
the context arguments and then in registry.

3.10. Contexts 27

pint Documentation, Release 0.9

A single forward arrow (->) indicates that the equations is used to transform from the first dimension to the second
one. A double arrow (<->) is used to indicate that the transformation operates both ways.

Context definitions are stored and imported exactly like custom units definition file (and can be included in the same
file as unit definitions). See “Defining units” for details.

3.10.5 Defining contexts programmatically

You can create Context object, and populate the conversion rules using python functions. For example:

>>> ureg = pint.UnitRegistry()
>>> c = pint.Context('ab')
>>> c.add_transformation('[length]', '[time]',
... lambda ureg, x: ureg.speed_of_light / x)
>>> c.add_transformation('[time]', '[length]',
... lambda ureg, x: ureg.speed_of_light * x)
>>> ureg.add_context(c)

3.11 Using Measurements

Measurements are the combination of two quantities: the mean value and the error (or uncertainty). The easiest ways
to generate a measurement object is from a quantity using the plus_minus operator.

>>> import numpy as np
>>> from pint import UnitRegistry
>>> ureg = UnitRegistry()
>>> book_length = (20. * ureg.centimeter).plus_minus(2.)
>>> print(book_length)
(20.0 +/- 2.0) centimeter

You can inspect the mean value, the absolute error and the relative error:

>>> print(book_length.value)
20.0 centimeter
>>> print(book_length.error)
2.0 centimeter
>>> print(book_length.rel)
0.1

You can also create a Measurement object giving the relative error:

>>> book_length = (20. * ureg.centimeter).plus_minus(.1, relative=True)
>>> print(book_length)
(20.0 +/- 2.0) centimeter

Measurements support the same formatting codes as Quantity. For example, to pretty print a measurement with 2
decimal positions:

>>> print('{:.02fP}'.format(book_length))
(20.00 ± 2.00) centimeter

Mathematical operations with Measurements, return new measurements following the Propagation of uncertainty
rules.

28 Chapter 3. User Guide

http://en.wikipedia.org/wiki/Propagation_of_uncertainty

pint Documentation, Release 0.9

>>> print(2 * book_length)
(40.0 +/- 4.0) centimeter
>>> width = (10 * ureg.centimeter).plus_minus(1)
>>> print('{:.02f}'.format(book_length + width))
(30.00 +/- 2.24) centimeter

Note: only linear combinations are currently supported.

3.12 Defining units

3.12.1 In a definition file

To define units in a persistent way you need to create a unit definition file. Such files are simple text files in which
the units are defined as function of other units. For example this is how the minute and the hour are defined in
default_en.txt:

hour = 60 * minute = h = hr
minute = 60 * second = min

It is quite straightforward, isn’t it? We are saying that minute is 60 seconds and is also known as min. The first word
is always the canonical name. Next comes the definition (based on other units). Finally, a list of aliases, separated by
equal signs.

The order in which units are defined does not matter, Pint will resolve the dependencies to define them in the right
order. What is important is that if you transverse all definitions, a reference unit is reached. A reference unit is not
defined as a function of another units but of a dimension. For the time in default_en.txt, this is the second:

second = [time] = s = sec

By defining second as equal to a string time in square brackets we indicate that:

• time is a physical dimension.

• second is a reference unit.

The ability to define basic physical dimensions as well as reference units allows to construct arbitrary units systems.

Pint is shipped with a default definition file named default_en.txt where en stands for English. You can add your own
definitions to the end of this file but you will have to be careful to merge when you update Pint. An easier way is to
create a new file (e.g. mydef.txt) with your definitions:

dog_year = 52 * day = dy

and then in Python, you can load it as:

>>> from pint import UnitRegistry
>>> # First we create the registry.
>>> ureg = UnitRegistry()
>>> # Then we append the new definitions
>>> ureg.load_definitions('/your/path/to/my_def.txt')

If you make a translation of the default units or define a completely new set, you don’t want to append the translated
definitions so you just give the filename to the constructor:

3.12. Defining units 29

pint Documentation, Release 0.9

>>> from pint import UnitRegistry
>>> ureg = UnitRegistry('/your/path/to/default_es.txt')

In the definition file, prefixes are identified by a trailing dash:

yocto- = 10.0**-24 = y-

It is important to note that prefixed defined in this way can be used with any unit, including non-metric ones (e.g.
kiloinch is valid for Pint). This simplifies definitions files enormously without introducing major problems. Pint, like
Python, believes that we are all consenting adults.

3.12.2 Programmatically

You can easily add units to the registry programmatically. Let’s add a dog_year (sometimes written as dy) equivalent
to 52 (human) days:

>>> from pint import UnitRegistry
>>> # We first instantiate the registry.
>>> # If we do not provide any parameter, the default unit definitions are used.
>>> ureg = UnitRegistry()
>>> Q_ = ureg.Quantity

Here we add the unit
>>> ureg.define('dog_year = 52 * day = dy')

We create a quantity based on that unit and we convert to years.
>>> lassie_lifespan = Q_(10, 'year')
>>> print(lassie_lifespan.to('dog_years'))
70.23888438100961 dog_year

Note that we have used the name dog_years even though we have not defined the plural form as an alias. Pint takes
care of that, so you don’t have to.

You can also add prefixes programmatically:

>>> ureg.define('myprefix- = 30 = my-')

where the number indicates the multiplication factor.

Warning: Units and prefixes added programmatically are forgotten when the program ends.

3.13 Optimizing Performance

Pint can impose a significant performance overhead on computationally-intensive problems. The following are some
suggestions for getting the best performance.

Note: Examples below are based on the IPython shell (which provides the handy %timeit extension), so they will not
work in a standard Python interpreter.

30 Chapter 3. User Guide

pint Documentation, Release 0.9

3.13.1 Use magnitudes when possible

It’s significantly faster to perform mathematical operations on magnitudes (even though your’e still using pint to
retrieve them from a quantity object).

In [1]: from pint import UnitRegistry

In [2]: ureg = UnitRegistry()

In [3]: q1 =ureg('1m')

In [5]: q2=ureg('2m')

In [6]: %timeit (q1-q2)
100000 loops, best of 3: 7.9 µs per loop

In [7]: %timeit (q1.magnitude-q2.magnitude)
1000000 loops, best of 3: 356 ns per loop

This is especially important when using pint Quantities in conjunction with an iterative solver, such as the brentq
method from scipy:

In [1]: from scipy.optimize import brentq

In [2]: def foobar_with_quantity(x):
find the value of x that equals q2

assign x the same units as q2
qx = ureg(str(x)+str(q2.units))

compare the two quantities, then take their magnitude because
brentq requires a dimensionless return type
return (qx - q2).magnitude

In [3]: def foobar_with_magnitude(x):
find the value of x that equals q2

don't bother converting x to a quantity, just compare it with q2's
→˓magnitude

return x - q2.magnitude

In [4]: %timeit brentq(foobar_with_quantity,0,q2.magnitude)
1000 loops, best of 3: 310 µs per loop

In [5]: %timeit brentq(foobar_with_magnitude,0,q2.magnitude)
1000000 loops, best of 3: 1.63 µs per loop

Bear in mind that altering computations like this loses the benefits of automatic unit conversion, so use with care.

3.13.2 A safer method: wrapping

A better way to use magnitudes is to use pint’s wraps decorator (See Wrapping and checking functions). By decorating
a function with wraps, you pass only the magnitude of an argument to the function body according to units you specify.
As such this method is safer in that you are sure the magnitude is supplied in the correct units.

3.13. Optimizing Performance 31

http://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.brentq.html
http://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.brentq.html

pint Documentation, Release 0.9

In [1]: import pint

In [2]: ureg = pint.UnitRegistry()

In [3]: import numpy as np

In [4]: def f(x, y):
return (x - y) / (x + y) * np.log(x/y)

In [5]: @ureg.wraps(None, ('meter', 'meter'))
def g(x, y):

return (x - y) / (x + y) * np.log(x/y)

In [6]: a = 1 * ureg.meter

In [7]: b = 1 * ureg.centimeter

In [8]: %timeit f(a, b)
1000 loops, best of 3: 312 µs per loop

In [9]: %timeit g(a, b)
10000 loops, best of 3: 65.4 µs per loop

3.14 Different Unit Systems (and default units)

Pint Unit Registry has the concept of system, which is a group of units

>>> import pint
>>> ureg = pint.UnitRegistry(system='mks')
>>> ureg.default_system
'mks'

This has an effect in the base units. For example:

>>> q = 3600. * ureg.meter / ureg.hour
>>> q.to_base_units()
<Quantity(1.0, 'meter / second')>

But if you change to cgs:

>>> ureg.default_system = 'cgs'
>>> q.to_base_units()
<Quantity(100.0, 'centimeter / second')>

or more drastically to:

>>> ureg.default_system = 'imperial'
>>> '{:.3f}'.format(q.to_base_units())
'1.094 yard / second'

..warning: In versions previous to 0.7 to_base_units returns quantities in the units of the definition files (which
are called root units). For the definition file bundled with pint this is meter/gram/second. To get back this
behaviour use to_root_units, set ureg.system = None

You can also use system to narrow down the list of compatible units:

32 Chapter 3. User Guide

pint Documentation, Release 0.9

>>> ureg.default_system = 'mks'
>>> ureg.get_compatible_units('meter')
frozenset({<Unit('light_year')>, <Unit('angstrom')>})

or for imperial units:

>>> ureg.default_system = 'imperial'
>>> ureg.get_compatible_units('meter')
frozenset({<Unit('thou')>, <Unit('league')>, <Unit('nautical_mile')>, <Unit('inch')>,
→˓<Unit('mile')>, <Unit('yard')>, <Unit('foot')>})

You can check which unit systems are available:

>>> dir(ureg.sys)
['US', 'cgs', 'imperial', 'mks']

Or which units are available within a particular system:

>>> dir(ureg.sys.imperial)
['UK_hundredweight', 'UK_ton', 'acre_foot', 'cubic_foot', 'cubic_inch', 'cubic_yard',
→˓'drachm', 'foot', 'grain', 'imperial_barrel', 'imperial_bushel', 'imperial_cup',
→˓'imperial_fluid_drachm', 'imperial_fluid_ounce', 'imperial_gallon', 'imperial_gill',
→˓ 'imperial_peck', 'imperial_pint', 'imperial_quart', 'inch', 'long_hunderweight',
→˓'long_ton', 'mile', 'ounce', 'pound', 'quarter', 'short_hunderdweight', 'short_ton',
→˓ 'square_foot', 'square_inch', 'square_mile', 'square_yard', 'stone', 'yard']

Notice that this give you the opportunity to choose within units with colliding names:

>>> (1 * ureg.sys.imperial.pint).to('liter')
<Quantity(0.5682612500000002, 'liter')>
>>> (1 * ureg.sys.US.pint).to('liter')
<Quantity(0.47317647300000004, 'liter')>
>>> (1 * ureg.sys.US.pint).to(ureg.sys.imperial.pint)
<Quantity(0.8326741846289889, 'imperial_pint')>

3.14. Different Unit Systems (and default units) 33

pint Documentation, Release 0.9

34 Chapter 3. User Guide

CHAPTER 4

More information

4.1 Contributing to Pint

You can contribute in different ways:

4.1.1 Report issues

You can report any issues with the package, the documentation to the Pint issue tracker. Also feel free to submit
feature requests, comments or questions.

4.1.2 Contribute code

To contribute fixes, code or documentation to Pint, fork Pint in github and submit the changes using a pull request
against the master branch.

• If you are fixing a bug, add a test to test_issues.py Also add “Close #<bug number> as described in the github
docs.

• If you are submitting new code, add tests and documentation.

Pint uses bors-ng as a merge bot and therefore every PR is tested before merging.

In any case, feel free to use the issue tracker to discuss ideas for new features or improvements.

4.2 Frequently asked questions

4.2.1 Why the name Pint?

Pint is a unit and sounds like Python in the first syllable. Most important, it is a good unit for beer.

35

https://github.com/hgrecco/pint/issues
http://github.com/hgrecco/pint
https://help.github.com/articles/closing-issues-via-commit-messages/
https://help.github.com/articles/closing-issues-via-commit-messages/
https://github.com/hgrecco/pint/issues

pint Documentation, Release 0.9

4.2.2 You mention other similar Python libraries. Can you point me to those?

natu

Buckingham

Magnitude

SciMath

Python-quantities

Unum

Units

udunitspy

SymPy

Units

cf units

astropy units

yt

If your are aware of another one, please contribute a patch to the docs.

36 Chapter 4. More information

http://kdavies4.github.io/natu/
https://code.google.com/p/buckingham/
http://github.com/juanre/magnitude.git
https://github.com/enthought/scimath.git
https://github.com/python-quantities/python-quantities.git
https://bitbucket.org/kiv/unum
https://bitbucket.org/adonohue/units/
https://github.com/blazetopher/udunitspy
http://docs.sympy.org/dev/modules/physics/units.html
https://bitbucket.org/adonohue/units/
https://github.com/SciTools/cf_units
https://github.com/astropy/astropy
https://github.com/yt-project/yt

CHAPTER 5

One last thing

The MCO MIB has determined that the root cause for the loss of the MCO spacecraft was the failure
to use metric units in the coding of a ground software file, “Small Forces,” used in trajectory models.
Specifically, thruster performance data in English units instead of metric units was used in the software
application code titled SM_FORCES (small forces). The output from the SM_FORCES application code
as required by a MSOP Project Software Interface Specification (SIS) was to be in metric units of New-
tonseconds (N-s). Instead, the data was reported in English units of pound-seconds (lbf-s). The Angular
Momentum Desaturation (AMD) file contained the output data from the SM_FORCES software. The
SIS, which was not followed, defines both the format and units of the AMD file generated by ground-
based computers. Subsequent processing of the data from AMD file by the navigation software algorithm
therefore, underestimated the effect on the spacecraft trajectory by a factor of 4.45, which is the required
conversion factor from force in pounds to Newtons. An erroneous trajectory was computed using this
incorrect data.

Mars Climate Orbiter Mishap Investigation Phase I Report PDF

37

ftp://ftp.hq.nasa.gov/pub/pao/reports/1999/MCO_report.pdf

	Quick Installation
	Design principles
	User Guide
	More information
	One last thing

